Спирамицин: прошлое и будущее антибиотика с плейотропными эффектами в терапии внебольничных инфекций
https://doi.org/10.19163/2307-9266-2024-12-2-150-171
Аннотация
Цель. Поиск и анализ работ, посвященных фармакокинетическим (ФК) и фармакодинамическим (ФД) параметрам спирамицина, позволяющим оценить потенциал данного макролида в терапии внебольничных инфекций.
Материалы и методы. Для поиска материалов были использованы реферативные базы данных: PubMed, Google Scholar, EMBASE, научно-информационная сеть ResearchGate и elibrary.ru. В работе использовали следующие ключевые запросы: «фармакокинетика спирамицина», «фармакокинетические параметры спирамицина», «pharmacokinetics of spiramycin», «pharmacokinetic parameters of spiramycin», «фармакодинамика, спирамицина», «механизм действия спирамицина», «мишени для спирамицина», «фармакодинамические эффекты спирамицина», «pharmacodynamics of spiramycin», «mechanism of action of spiramycin», «targets for spiramycin», «pharmacodynamic effects of spiramycin». Глубина поиска – 69 лет (1955–2024 гг.), общее число публикаций, включённых в литературный обзор по направлениям «фармакокинетика» и «фармакодинамика» – 72. Общее число использованных в статье источников составило 152.
Результаты. В условиях распространения феномена антибиотикорезистентности (АБР) среди возбудителей как нозокомиальных, так и внебольничных инфекций, актуальным для врача является поиск стратегий, позволяющих сохранить возможность использования антибактериальных препаратов (АБП) первой линии в ведении пациентов с инфекционными заболеваниями. Спирамицин в последние десятилетия характеризовался минимальным уровнем потребления среди населения, в связи с чем имеет потенциал для терапии инфекционных заболеваний. Анализ ФК параметров спирамицина свидетельствует о способности формировать эффективные концентрации в различных тканях и органах, а также о минимальном риске лекарственных взаимодействий, способных изменять терапевтический ответ. Оценка его антибактериальной активности in vitro и in vivo даёт различные результаты, свидетельствующие о способности препарата проявлять значительно большую эффективность в условиях живого организма. В основе этого парадокса могут лежать плейотропные эффекты спирамицина, вовлекающие как клетки организма хозяина (иммуномодулирующее и противовоспалительное действие, способность благотворно воздействовать на процессы регенерации тканей, противоопухолевая активность, угнетение адипогенеза), так и мишени возбудителей (способность снижать вирулентность Р. aerugenosa, противовирусное действие, снижение способности кокков к адгезии).
Заключение. ФК и ФД параметры и свойства спирамицина наряду с результатами опубликованных клинических исследований, оценивавших его эффективность, указывают на то, что, несмотря на меньшую активность in vitro, наличие дополнительных плейотропных эффектов может быть залогом его превосходства над традиционными макролидами в методах in vivo.
Ключевые слова
Об авторах
О. И. БутрановаРоссия
кандидат медицинских наук, доцент кафедры общей и клинической фармакологии Медицинского института ФГАОУ РУДН им. Патриса Лумумбы.
117198, Россия, г. Москва, ул. Миклухо-Маклая, д. 6
С. К. Зырянов
Россия
доктор медицинских наук, профессор, заведующий кафедрой общей и клинической фармакологии ФГАОУ РУДН им. Патриса Лумумбы; заместитель главного врача ГБУЗ «Городская клиническая больница № 24 Департамента здравоохранения города Москвы».
117198, Россия, г. Москва, ул. Миклухо-Маклая, д. 6.
127015, Россия, г. Москва, ул. Писцовая, д. 10
А. А. Абрамова
Россия
аспирант кафедры общей и клинической фармакологии Медицинского института ФГАОУ РУДН им. Патриса Лумумбы.
117198, Россия, г. Москва, ул. Миклухо-Маклая, д. 6
Список литературы
1. Hutchings M.I., Truman A.W, Wilkinson B. Antibiotics: past, present and future // Curr Opin Microbiol. – 2019. – Vol. 51. – P. 72–80. DOI: 10.1016/j.mib.2019.10.008
2. Uddin T.M., Chakraborty A.J., Khusro A., Zidan B.R.M., Mitra S., Emran T.B., Dhama K., Ripon M.K.H., Gajdács M., Sahibzada M.U.K., Hossain M.J., Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects // J Infect Public Health. – 2021. – Vol. 14, No. 12. – P. 1750–1766. DOI: 10.1016/j.jiph.2021.10.020
3. Zahari N.I.N., Engku Abd Rahman E.N.S., Irekeola A.A., Ahmed N., Rabaan A.A., Alotaibi J., Alqahtani S.A., Halawi M.Y., Alamri I.A., Almogbel M.S., Alfaraj A.H., Ibrahim F.A., Almaghaslah M., Alissa M., Yean C.Y. A Review of the Resistance Mechanisms for β-Lactams, Macrolides and Fluoroquinolones among Streptococcus pneumoniae // Medicina (Kaunas). – 2023. – Vol. 59, No. 11. – P. 1927. DOI: 10.3390/medicina59111927
4. Gupta V., Yu K.C., Schranz J., Gelone S.P. A Multicenter Evaluation of the US Prevalence and Regional Variation in Macrolide-Resistant S. pneumoniae in Ambulatory and Hospitalized Adult Patients in the United States // Open Forum Infect Dis. – 2021. – Vol. 8, No. 7. – P. ofab063. DOI: 10.1093/ofid/ofab063
5. Gergova R., Boyanov V., Muhtarova A., Alexandrova A. A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health // Antibiotics (Basel). – 2024. – Vol. 13, No. 4. – P. 360. DOI: 10.3390/antibiotics13040360
6. Alexandrova A., Pencheva D., Setchanova L., Gergova R. Association of pili with widespread multidrug-resistant genetic lineages of non-invasive pediatric Streptococcus pneumoniae isolates // Acta Microbiol Immunol. Hung. – 2022. – Vol. 69. – P. 177–184. DOI: 10.1556/030.2022.01816
7. Okada T., Sato Y., Toyonaga Y., Hanaki H., Sunakawa K. Nationwide survey of Streptococcus pneumoniae drug resistance in the pediatric field in Japan // Pediatr Int. – 2016. – Vol. 58. – P. 192–201. DOI: 10.1111/ped.12781
8. Fu J., Yi R., Jiang Y., Xu S., Qin P., Liang Z., Chen J. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae causing invasive diseases in China: A meta-analysis // BMC Pediatr. – 2019. – Vol. 19. – P. 424. DOI: 10.1186/s12887-019-1722-1
9. Zhou X., Liu J., Zhang Z., Cui B., Wang Y., Zhang Y., Xu H., Cheng G., Liu Y., Qin X. Characterization of Streptococcus pneumoniae Macrolide Resistance and Its Mechanism in Northeast China over a 20-Year Period // Microbiol Spectr. – 2022. – Vol. 10, No. 5. – P. e0054622. DOI: 10.1128/spectrum.00546-22
10. Mohammadi Gharibani K., Azami A., Parvizi M., Khademi F., Mousavi S.F., Arzanlou M. High Frequency of Macrolide-Resistant Streptococcus pneumoniae Colonization in Respiratory Tract of Healthy Children in Ardabil, Iran // Tanaffos. – 2019. – Vol. 18, No. 2. – P. 118–125.
11. Иванчик Н.В., Чагарян А.Н., Сухорукова М.В., Козлов Р.С., Дехнич А.В., Кречикова О.И., Виноградова А.Г., Кузьменков А.Ю., Трушин И.В., Сивая О.В., Муравьев А.А., Стребкова В.В., Кочнева Н.А., Аминева П.Г., Исхакова Л.М., Дик Н.Г., Морозова О.А., Лазарева А.В., Чернявская Ю.Л., Кириллова Г.Ш., Беккер Г.Г., Попова Л.Д., Елохина Е.В., Зубарева Н.А., Москвитина Е.Н., Петрова Т.А., Жолобова А.Ф., Гудкова Л.В., Хохлявин Р.Л., Бурасова Е.Г., Холодок Г.Н., Панина О.А., Ершова М.Г. Антибиотикорезистентность клинических штаммов Streptococcus pneumoniae в России: результаты многоцентрового эпидемиологического исследования «ПеГАС 2014–2017» // Клиническая микробиология и антимикробная химиотерапия. – 2019. – Т. 21, № 3. – С. 230–237. DOI: 10.36488/cmac.2019.3.230-237
12. Berbel D., González-Díaz A., López de Egea G., Càmara J., Ardanuy C. An Overview of Macrolide Resistance in Streptococci: Prevalence, Mobile Elements and Dynamics // Microorganisms. – 2022. – Vol. 10, No. 12. – P. 2316. DOI: 10.3390/microorganisms10122316
13. Стецюк О.У., Андреева И.В., Егорова О.А. Антибиотикорезистентность основных возбудителей ЛОР-заболеваний // РМЖ. Медицинское обозрение. – 2019. – Т. 3, № 9(II). – С. 78–83.
14. Guo D.X., Hu W.J., Wei R., Wang H., Xu B.P., Zhou W., Ma S.J., Huang H., Qin X.G., Jiang Y., Dong X.P., Fu X.Y., Shi D.W., Wang L.Y., Shen A.D., Xin D.L. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: A multicenter study // Bosn J Basic Med Sci. – 2019. – Vol. 19, No. 3. – P. 288–296. DOI: 10.17305/bjbms.2019.4053
15. Loconsole D., De Robertis A.L., Sallustio A., Centrone F., Morcavallo C., Campanella S., Accogli M., Chironna M. Update on the Epidemiology of Macrolide-Resistant Mycoplasma pneumoniae in Europe: A Systematic Review // Infect Dis Rep. – 2021. – Vol. 13, No. 3. – P. 811–820. DOI: 10.3390/idr13030073
16. Molan A., Nosaka K., Hunter M., Wang W. Global status of Toxoplasma gondii infection: systematic review and prevalence snapshots // Trop Biomed. – 2019. – Vol. 36, No. 4. – P. 898–925.
17. Khabisi S.A., Almasi S.Z., Zadeh S.L. Seroprevalence and Risk Factors Associated with Toxoplasma gondii Infection in the Population Referred to Rural and Urban Health Care Centers in Zahedan, Primary Referral Level, in Southeastern Iran // J Parasitol Res. – 2022. – Vol. 2022:7311905. DOI: 10.1155/2022/7311905
18. Yu C.P., Chen B.C., Chou Y.C., Hsieh C.J., Lin F.H. The epidemiology of patients with toxoplasmosis and its associated risk factors in Taiwan during the 2007–2020 period // PLoS One. – 2023. – Vol. 18, No. 8. – P. e0290769. DOI: 10.1371/journal.pone.0290769
19. Montazeri M., Mehrzadi S., Sharif M., Sarvi S., Tanzifi A., Aghayan S.A., Daryani A. Drug Resistance in Toxoplasma gondii // Front Microbiol. – 2018. – Vol. 9. – P. 2587. DOI: 10.3389/fmicb.2018.02587
20. Adriaenssens N., Bruyndonckx R., Versporten A., Hens N., Monnet D.L., Molenberghs G., Goossens H., Weist K., Coenen S.; ESAC-Net study group. Consumption of macrolides, lincosamides and streptogramins in the community, European Union/European Economic Area, 1997–2017 // J Antimicrob Chemother. – 2021. – Vol. 76, No. 12 (Suppl 2). – P. ii30–ii36. DOI: 10.1093/jac/dkab175
21. Карноух К.И., Лазарева Н.Б. Анализ потребления антибактериальных средств на фоне пандемии COVID-19: уровень стационара // Медицинский Совет. – 2021. – № 16. – С. 118–128. DOI: 10.21518/2079-701X-2021-16-118-128
22. Захаренков И.А., Рачина С.А., Козлов Р.С., Белькова Ю.А. Потребление системных антибиотиков в России в 2017–2021 гг.: основные тенденции. Клиническая микробиология и антимикробная химиотерапия. – 2022. – Т. 24, № 3. – С. 220–225. DOI: 10.36488/cmac.2022.3.220-225
23. Calcagnile M., Bettini S., Damiano F., Talà A., Tredici S.M., Pagano R., Di Salvo M., Siculella L., Fico D., De Benedetto G.E., Valli L., Alifano P. Stimulatory Effects of Methyl-β-cyclodextrin on Spiramycin Production and Physical-Chemical Characterization of Nonhost@Guest Complexes // ACS Omega. – 2018. – Vol. 3, No. 3. – P. 2470–2478. DOI: 10.1021/acsomega.7b01766
24. Vacek V. Spiramycin [Spiramycin] // Cas Lek Cesk. – 1994. – Vol. 133, No. 2. – P. 56–60. Czech
25. Arsic B., Barber J., Čikoš A., Mladenovic M., Stankovic N., Novak P. 16-membered macrolide antibiotics: a review // Int J Antimicrob Agents. – 2018. – Vol. 51, No. 3. – P. 283–298. DOI: 10.1016/j.ijantimicag.2017.05.020
26. Breiner-Goldstein E., Eyal Z., Matzov D., Halfon Y., Cimicata G., Baum M., Rokney A., Ezernitchi A.V., Lowell A.N., Schmidt J.J., Rozenberg H., Zimmerman E., Bashan A., Valinsky L., Anzai Y., Sherman D.H., Yonath A. Ribosome-binding and anti-microbial studies of the mycinamicins, 16-membered macrolide antibiotics from Micromonospora griseorubida // Nucleic Acids Res. – 2021. – Vol. 49, No. 16. – P. 9560–9573. DOI: 10.1093/nar/gkab684
27. Яковлев С.В., Суворова М.П. Ренессанс спирамицина в клинической практике // Антибиотики и Химиотерапия. – 2023. – Т. 68, № 7–8. – С. 83–89. DOI: 10.37489/0235-2990-2023-68-7-8-83-89
28. Butranova O.I., Ushkalova E.A., Zyryanov S.K., Chenkurov M.S., Baybulatova E.A. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence // Biomedicines. – 2023. – Vol. 11, No. 6. – P. 1633. DOI: 10.3390/biomedicines11061633
29. Butranova O.I., Ushkalova E.A., Zyryanov S.K., Chenkurov M.S. Developmental Pharmacokinetics of Antibiotics Used in Neonatal ICU: Focus on Preterm Infants // Biomedicines. – 2023. – Vol. 11, No. 3. – P. 940. DOI: 10.3390/biomedicines11030940
30. Baietto L., Corcione S., Pacini G., Perri G.D., D’Avolio A., De Rosa F.G. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics? // Curr Drug Metab. – 2014. – Vol. 15, No. 6. – P. 581–598. DOI: 10.2174/1389200215666140605130935
31. Nielsen E.I., Cars O., Friberg L.E. Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization // Antimicrob Agents Chemother. – 2011. – Vol. 55, No. 10. – P. 4619–4630. DOI: 10.1128/AAC.00182-11
32. Fuursted K., Knudsen J.D., Petersen M.B., Poulsen R.L., Rehm D. Comparative study of bactericidal activities, postantibiotic effects, and effects of bacterial virulence of penicillin G and six macrolides against Streptococcus pneumoniae // Antimicrob Agents Chemother. – 1997. – Vol. 41, No. 4. – P. 781–784. DOI: 10.1128/AAC.41.4.781
33. Wang L., Zhang Y. Postantibiotic effects and postantibiotic sub-MIC effects of tilmicosin, erythromycin and tiamulin on erythromycin-resistant Streptococcus suis // Braz J Microbiol. – 2009. – Vol. 40, No. 4. – P. 980–987. DOI: 10.1590/S1517-838220090004000033
34. Odenholt-Tornqvist I., Löwdin E., Cars O. Postantibiotic effects and postantibiotic sub-MIC effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens // Antimicrob Agents Chemother. – 1995. – Vol. 39, No. 1. – P. 221–226. DOI: 10.1128/AAC.39.1.221
35. Kricker J.A., Page C.P., Gardarsson F.R., Baldursson O., Gudjonsson T., Parnham M.J. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development // Pharmacol Rev. – 2021. – Vol. 73, No. 4. – P. 233–262. DOI: 10.1124/pharmrev.121.000300
36. Pollock J., Chalmers J.D. The immunomodulatory effects of macrolide antibiotics in respiratory disease // Pulm Pharmacol Ther. 2021. – Vol. 71. – P. 102095. DOI: 10.1016/j.pupt.2021.102095
37. Zarogoulidis P., Papanas N., Kioumis I., Chatzaki E., Maltezos E., Zarogoulidis K. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases // Eur J Clin Pharmacol. – 2012. – Vol. 68, No. 5. – P. 479–503. DOI: 10.1007/s00228-011-1161-x
38. Culić O., Eraković V., Parnham M.J. Anti-inflammatory effects of macrolide antibiotics // Eur J Pharmacol. – 2001. – Vol. 429, No. 1–3. – P. 209–229. DOI: 10.1016/s0014-2999(01)01321-8
39. Cao X., Du X., Jiao H., An Q., Chen R., Fang P., Wang J., Yu B. Carbohydrate-based drugs launched during 2000–2021. Acta Pharm Sin B. 2022 Oct. – Vol. 12, No. 10. – P. 3783–3821. DOI: 10.1016/j.apsb.2022.05.020
40. Zhang X., Wu X., Xie F., Wang Z., Zhang X., Jiang L. Physicochemical Properties and In Vitro Dissolution of Spiramycin Microparticles Using the Homogenate-Antisolvent Precipitation Process // Applied Sciences. – 2017. – Vol. 7, No. 1. – P. 10. DOI: 10.3390/app7010010
41. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings // Adv Drug Deliv Rev. – 2001. – Vol. 46, No. 1–3. – P. 3–26. DOI: 10.1016/s0169-409x(00)00129-0
42. Matsson P., Doak B.C., Over B., Kihlberg J. Cell permeability beyond the rule of 5 // Adv Drug Deliv Rev. – 2016. – Vol. 101. – P. 42–61. DOI: 10.1016/j.addr.2016.03.013
43. Danelius E., Poongavanam V., Peintner S., Wieske L.H.E., Erdélyi M., Kihlberg J. Solution Conformations Explain the Chameleonic Behaviour of Macrocyclic Drugs // Chemistry. – 2020. – Vol. 26, No. 23. – P. 5231–5244. DOI: 10.1002/chem.201905599
44. Erckes V., Steuer C. A story of peptides, lipophilicity and chromatography - back and forth in time // RSC Med Chem. – 2022. – Vol. 13, No. 6. – P. 676–687. DOI: 10.1039/d2md00027j
45. Wieske L.H.E., Atilaw Y., Poongavanam V., Erdélyi M., Kihlberg J. Going Viral: An Investigation into the Chameleonic Behaviour of Antiviral Compounds // Chemistry. – 2023. – Vol. 29, No. 8. – P. e202202798. DOI: 10.1002/chem.202202798
46. Padovan J., Ralić J., Letfus V., Milić A., Bencetić Mihaljević V. Investigating the barriers to bioavailability of macrolide antibiotics in the rat // Eur J Drug Metab Pharmacokinet. – 2012. – Vol. 37, No. 3. – P. 163–171. DOI: 10.1007/s13318-011-0074-5
47. Doak BC., Over B., Giordanetto F., Kihlberg J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates // Chem Biol. – 2014. – Vol. 21, No. 9. – P. 1115–1142. DOI: 10.1016/j.chembiol.2014.08.013
48. Peters D.H., Friedel H.A., McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy // Drugs. – 1992. – Vol. 44, No. 5. – P. 750–799. DOI: 10.2165/00003495-199244050-00007
49. Foulds G., Shepard R.M., Johnson R.B. The pharmacokinetics of azithromycin in human serum and tissues // J Antimicrob Chemother. – 1990. – Vol. 25 (Suppl A). – P. 73–82. DOI: 10.1093/jac/25.suppl_a.73
50. Chabbert Y. In vitro studies on spiramycin; activity, resistance, antibiogram, humoral concentrations // Ann Inst Pasteur (Paris). – 1955. – Vol. 89, No. 4. – P. 434–446. French
51. Frydman A.M., Le Roux Y., Desnottes J.F., Kaplan P., Djebbar F., Cournot A., Duchier J., Gaillot J. Pharmacokinetics of spiramycin in man // J Antimicrob Chemother. – 1988. – Vol. 22 (Suppl B). – P. 93–103. DOI: 10.1093/jac/22.supplement_b.93
52. Hamilton-Miller J.M. In-vitro activities of 14-, 15- and 16-membered macrolides against gram-positive cocci // J Antimicrob Chemother. – 1992. – Vol. 29, No. 2. – P. 141–147. DOI: 10.1093/jac/29.2.141
53. Desnottes J.F., Diallo N., Moret G. Effect of spiramycin on adhesiveness and phagocytosis of gram-positive cocci // J Antimicrob Chemother. – 1988. – Vol. 22 (Suppl B). – P. 25–32. DOI: 10.1093/jac/22.supplement_b.25
54. Ridgway G.L., Mumtaz G., Fenelon L. The in-vitro activity of clarithromycin and other macrolides against the type strain of Chlamydia pneumoniae (TWAR) // J Antimicrob Chemother. – 1991. – Vol. 27 (Suppl A). – P. 43–45. DOI: 10.1093/jac/27.suppl_a.43
55. Webster C., Ghazanfar K., Slack R. Sub-inhibitory and post-antibiotic effects of spiramycin and erythromycin on Staphylococcus aureus // J Antimicrob Chemother. – 1988. – Vol. 22 (Suppl B). – P. 33–39. DOI: 10.1093/jac/22.supplement_b.33
56. Chavanet P., Portier H. Treatment of acute pharyngitis // Rev Prat. – 1992. – Vol. 42, No. 3. – P. 303–307.
57. Yagiz Aghayarov O., Bayar Muluk N., Vejselova Sezer C., Kutlu H.M., Cingi C. Evaluation of spiramycin for topical applications: a cell culture study // Eur Rev Med Pharmacol Sci. – 2023. – Vol. 27, No. 2. – P. 44–50. DOI: 10.26355/eurrev_202303_31701
58. Rubinstein E., Keller N. Spiramycin renaissance // J Antimicrob Chemother. – 1998. – Vol. 42, No. 5. – P. 572–576. DOI: 10.1093/jac/42.5.572
59. Chan T.S., Scaringella Y.S., Raymond K., Taub M.E. Evaluation of Erythromycin as a Tool to Assess CYP3A Contribution of Low Clearance Compounds in a Long-Term Hepatocyte Culture // Drug Metab Dispos. – 2020. – Vol. 48, No. 8. – P. 690–697. DOI: 10.1124/dmd.120.090951
60. Akiyoshi T., Ito M., Murase S., Miyazaki M., Guengerich F.P., Nakamura K., Yamamoto K., Ohtani H. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants // Drug Metab Pharmacokinet. – 2013. – Vol. 28, No. 5. – P. 411–415. DOI: 10.2133/dmpk.dmpk-12-rg-134
61. Krasniqi S., Matzneller P., Kinzig M., Sorgel F., Huttner S., Lackner E., Muller M., Zeitlinger M. Blood, tissue, and intracellular concentrations of erythromycin and its metabolite anhydroerythromycin during and after therapy // Antimicrob Agents Chemother. – 2012. – Vol. 56, No. 2. – P. 1059–1064. DOI: 10.1128/AAC.05490-11
62. Fohner A.E., Sparreboom A., Altman R.B., Klein T.E. PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics // Pharmacogenet Genomics. – 2017. – Vol. 27, No. 4. – P. 164–167. DOI: 10.1097/FPC.0000000000000270
63. Glanzer S., Pulido S.A., Tutz S., Wagner G.E., Kriechbaum M., Gubensäk N., Trifunovic J., Dorn M., Fabian W.M., Novak P., Reidl J., Zangger K. Structural and functional implications of the interaction between macrolide antibiotics and bile acids // Chemistry. – 2015. – Vol. 21, No. 11. – P. 4350–4358. DOI: 10.1002/chem.201406413
64. Lenz K.D., Klosterman K.E., Mukundan H., Kubicek-Sutherland J.Z. Macrolides: From Toxins to Therapeutics // Toxins (Basel). – 2021. – Vol. 13, No. 5. – P. 347. DOI: 10.3390/toxins13050347
65. Fassbender M., Lode H., Schiller C., Andro R., Goetschi B., Borner K., Koeppe P. Comparative pharmacokinetics of macrolide antibiotics and concentrations achieved in polymorphonuclear leukocytes and saliva // Clin Microbiol Infect. – 1996. – Vol. 1, No. 4. – P. 235–243. DOI: 10.1016/s1198-743x(15)60281-6
66. Eberl S., Renner B., Neubert A., Reisig M., Bachmakov I., König J., Dörje F., Mürdter T.E., Ackermann A., Dormann H., Gassmann K.G., Hahn E.G., Zierhut S., Brune K., Fromm M.F. Role of p-glycoprotein inhibition for drug interactions: evidence from in vitro and pharmacoepidemiological studies // Clin Pharmacokinet. – 2007. – Vol. 46, No. 12. – P. 1039–1049. DOI: 10.2165/00003088-200746120-00004
67. Puri S.K., Lassman H.B. Roxithromycin: a pharmacokinetic review of a macrolide // J Antimicrob Chemother. – 1987. – Vol. 20 (Suppl B). – P. 89–100. DOI: 10.1093/jac/20.suppl_b.89
68. Yamazaki H., Shimada T: Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin // Drug Metab Dispos. – 1998. – Vol. 26, No. 11. – P. 1053–1057.
69. Singlas E. [Clinical pharmacokinetics of azithromycin]. Pathol Biol (Paris). – 1995. – Vol. 43, No. 6. – P. 505–511.
70. Skinner M., Kanfer I. Comparative bioavailability of josamycin, a macrolide antibiotic, from a tablet and solution and the influence of dissolution on in vivo release // Biopharm Drug Dispos. – 1998. – Vol. 19, No. 1. – P. 21–29. DOI: 10.1002/(sici)1099- 081x(199801)19:1<21::aid-bdd69>3.0.co;2-g
71. Brook I. Pharmacodynamics and pharmacokinetics of spiramycin and their clinical significance // Clin Pharmacokinet. – 1998. – Vol. 34, No. 4. – P. 303–310. DOI: 10.2165/00003088-199834040-00003
72. Vázquez-Laslop N., Mankin A.S. How Macrolide Antibiotics Work // Trends Biochem Sci. – 2018. – Vol. 43, No. 9. – P. 668–684. DOI: 10.1016/j.tibs.2018.06.011
73. Kannan K., Vázquez-Laslop N., Mankin A.S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel // Cell. – 2012. – Vol. 151, No. 3. – P. 508–520. DOI: 10.1016/j.cell.2012.09.018
74. Aleksandrova E.V., Ma C.X., Klepacki D., Alizadeh F., Vázquez-Laslop N., Liang J.H., Polikanov Y.S., Mankin A.S. Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms // Nat Chem Biol. – 2024. DOI: 10.1038/s41589-024-01685-3
75. Credito K.L., Ednie L.M., Jacobs M.R., Appelbaum P.C. Activity of telithromycin (HMR 3647) against anaerobic bacteria compared to those of eight other agents by time-kill methodology // Antimicrob Agents Chemother. – 1999. – Vol. 43, No. 8. – P. 2027–2031. DOI: 10.1128/AAC.43.8.2027
76. Svetlov M.S., Vázquez-Laslop N., Mankin A.S. Kinetics of drug-ribosome interactions defines the cidality of macrolide antibiotics // Proc Natl Acad Sci U S A. – 2017. – Vol. 114, No. 52. – P. 13673–13678. DOI: 10.1073/pnas.1717168115
77. Lewis J.S. 2nd, Jorgensen J.H. Inducible clindamycin resistance in Staphylococci: should clinicians and microbiologists be concerned? // Clin Infect Dis. – 2005. – Vol. 40, No. 2. – P. 280–285. DOI: 10.1086/426894
78. Pernodet J.L., Alegre M.T., Blondelet-Rouault M.H., Guérineau M. Resistance to spiramycin in Streptomyces ambofaciens, the producer organism, involves at least two different mechanisms // J Gen Microbiol. – 1993. – Vol. 139, No. 5. – P. 1003–1011. DOI: 10.1099/00221287-139-5-1003
79. Davoodi S., Daryaee F., Chang A., Walker S.G., Tonge P.J. Correlating Drug-Target Residence Time and Post-antibiotic Effect: Insight into Target Vulnerability // ACS Infect Dis. – 2020. – Vol. 6, No. 4. – P. 629–636. DOI: 10.1021/acsinfecdis.9b00484
80. Kamme C., Kahlmeter G., Melander A. Evaluation of spiramycin as a therapeutic agent for elimination of nasopharyngeal pathogens. Possible use of spiramycin for middle ear infections and for gonococcal and meningococcal nasopharyngeal carriage // Scand J Infect Dis. – 1978. – Vol. 10, No. 2. – P. 135–142. DOI: 10.3109/inf.1978.10.issue-2.07
81. Kavi J., Webberley J.M., Andrews J.M., Wise R. A comparison of the pharmacokinetics and tissue penetration of spiramycin and erythromycin // J Antimicrob Chemother. – 1988. – Vol. 22:105–110. DOI: 10.1093/jac/22.Supplement_B.105
82. Elazab S.T., Elshater N.S., Hashem Y.H., Al-Atfeehy N.M., Lee E.B., Park S.C., Hsu W.H. Pharmacokinetic/Pharmacodynamic Modeling of Spiramycin against Mycoplasma synoviae in Chickens // Pathogens. – 2021. – Vol. 10, No. 10. – P. 1238. DOI: 10.3390/pathogens10101238
83. Brisson-Noël A., Trieu-Cuot P., Courvalin P. Mechanism of action of spiramycin and other macrolides // J Antimicrob Chemother. – 1988. – Vol. 22 Suppl B. – P. 13–23. DOI: 10.1093/jac/22.supplement_b.13
84. Pedra-Rezende Y., Macedo I.S., Midlej V., Mariante R.M., Menna-Barreto R.F.S. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa // Front Microbiol. – 2022. – Vol. 13. – P. 856686. DOI: 10.3389/fmicb.2022.856686
85. Carbon C. Pharmacodynamics of macrolides, azalides, and streptogramins: effect on extracellular pathogens // Clin Infect Dis. – 1998. – Vol. 27, No. 1. – P. 28–32. DOI: 10.1086/514619
86. Calcagnile M., Alifano P. Off-Target Activity of Spiramycin Disarms Pseudomonas aeruginosa by Inhibition of Biofilm Formation, Pigment Production and Phenotypic Differentiation // Medical Sciences Forum. – 2022. – Vol. 12, No. 1. – P. 42. DOI: 10.3390/eca2022-12723
87. Calcagnile M., Jeguirim I., Tredici S.M., Damiano F., Alifano P. Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel). – 2023. – Vol. 12, No. 3. – P. 499. DOI: 10.3390/antibiotics12030499
88. Smith C.R. The spiramycin paradox // J Antimicrob Chemother. – 1988. – Vol. 22 (Suppl B). – P. 141–144. DOI: 10.1093/jac/22.supplement_b.141
89. Poddighe D., Aljofan M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond // Antivir Chem Chemother. – 2020. – Vol. 28. – P. 2040206620961712. DOI: 10.1177/2040206620961712
90. Sugamata R., Sugawara A., Nagao T., Suzuki K., Hirose T., Yamamoto K., Oshima M., Kobayashi K., Sunazuka T., Akagawa K.S., Ōmura S., Nakayama T., Suzuki K. Leucomycin A3, a 16-membered macrolide antibiotic, inhibits influenza A virus infection and disease progression // J Antibiot (Tokyo). – 2014. – Vol. 67, No. 3. – P. 213–222. DOI: 10.1038/ja.2013.132
91. Zeng S., Meng X., Huang Q., Lei N., Zeng L., Jiang X., Guo X. Spiramycin and azithromycin, safe for administration to children, exert antiviral activity against enterovirus A71 in vitro and in vivo // Int J Antimicrob Agents. – 2019. – Vol. 53, No. 4. – P. 362–369. DOI: 10.1016/j.ijantimicag.2018
92. Hagras N.A., Mogahed N.M.F.H., Sheta E., Darwish A.A., El-Hawary M.A., Hamed M.T., Elwakil B.H. The powerful synergistic effect of spiramycin/propolis loaded chitosan/alginate nanoparticles on acute murine toxoplasmosis // PLoS Negl Trop Dis. – 2022. – Vol. 16, No. 3. – P. e0010268. DOI: 10.1371/journal.pntd.0010268
93. Allam A.F., Hagras N.A., Farag H.F., Osman M.M., Shalaby T.I., Kazem A.H., Shehab A.Y., Mogahed N.M.F.H. Remarkable histopathological improvement of experimental toxoplasmosis after receiving spiramycin-chitosan nanoparticles formulation // J Parasit Dis. – 2022. – Vol. 46, No. 1. – P. 166–177. DOI: 10.1007/s12639-021-01431-9
94. Hagras N.A., Allam A.F., Farag H.F., Osman M.M., Shalaby T.I., Fawzy Hussein Mogahed N.M., Tolba M.M., Shehab A.Y. Successful treatment of acute experimental toxoplasmosis by spiramycin-loaded chitosan nanoparticles // Exp Parasitol. – 2019. – Vol. 204. – P. 107717. DOI: 10.1016/j.exppara.2019.107717
95. Abdel-Wahab A.A., Shafey D.A., Selim S.M., Sharaf S.A., Mohsen K.K., Allam D.M., Elkhadry S.W., Gouda M.A. Spiramycin-loaded maltodextrin nanoparticles as a promising treatment of toxoplasmosis on murine model // Parasitol Res. – 2024. – Vol. 123, No. 7. – P. 286. DOI: 10.1007/s00436-024-08280-4
96. El Saftawy E.A., Turkistani S.A., Alghabban H.M., Albadawi E.A., Ibrahim B.E., Morsy S., Farag M.F., Al Hariry N.S., Shash R.Y., Elkazaz A., Amin N.M. Effects of Lactobacilli acidophilus and/or spiramycin as an adjunct in toxoplasmosis infection challenged with diabetes // Food Waterborne Parasitol. – 2023. – Vol. 32. – P. e00201. DOI: 10.1016/j.fawpar.2023.e00201
97. Kim M.O., Ryu H.W., Choi J.H., Son T.H., Oh S.R., Lee H.S., Yuk H.J., Cho S., Kang J.S., Lee C.W., Lee J., Lee C.K., Hong S.T., Lee S.U. Anti-Obesity Effects of Spiramycin In Vitro and In Vivo // PLoS One. – 2016. – Vol. 11, No. 7. – P. e0158632. DOI: 10.1371/journal.pone.0158632
98. Kenyon C., Laumen J., Manoharan-Basil S.S., Buyze J. Strong association between adolescent obesity and consumption of macrolides in Europe and the USA: An ecological study // J Infect Public Health. – 2020. – Vol. 13, No. 10. – P. 1517–1521. DOI: 10.1016/j.jiph.2020.06.024
99. Ternák G., Németh M., Rozanovic M., Márovics G., Bogár L. “Growth-Promoting Effect” of Antibiotic Use Could Explain the Global Obesity Pandemic: A European Survey. Antibiotics (Basel). – 2022. – Vol. 11, No. 10. – P. 1321. DOI: 10.3390/antibiotics11101321
100. Reijnders T.D.Y., Saris A., Schultz M.J., van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care // Lancet Respir Med. – 2020. – Vol. 8, No. 6. – P. 619–630. DOI: 10.1016/S2213-260(20)30080-1
101. Pons S., Arrii E., Arnaud M., Loiselle M., Ferry J., Nouacer M., Lion J., Cohen S., Mooney N., Zafrani L. Immunomodulation of endothelial cells induced by macrolide therapy in a model of septic stimulation // Immun Inflamm Dis. – 2021. – Vol. 9, No. 4. – P. 1656–1669. DOI: 10.1002/iid3.518
102. Kang J.K., Kang H.K., Hyun C.G. Anti-Inflammatory Effects of Spiramycin in LPS-Activated RAW 264.7 Macrophages // Molecules. – 2022. – Vol. 27, No. 10. – P. 3202. DOI: 10.3390/molecules27103202
103. Kanoh S., Rubin B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications // Clin Microbiol Rev. – 2010. – Vol. 23, No. 3. – P. 590–615. DOI: 10.1128/CMR.00078-09
104. Parnham M.J., Erakovic Haber V., Giamarellos-Bourboulis E.J., Perletti G., Verleden G.M., Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications // Pharmacol Ther. – 2014. – Vol. 143, No. 2. – P. 225–245. DOI: 10.1016/j.pharmthera.2014.03.003
105. Pohl K., Grimm X.A., Caceres S.M., Poch K.R., Rysavy N., Saavedra M., Nick J.A., Malcolm K.C. Mycobacterium abscessus Clearance by Neutrophils Is Independent of Autophagy // Infect Immun. 2020. – Vol. 88, No. 8. – P. e00024–20. DOI: 10.1128/IAI.00024-20
106. Kawamoto Y., Morinaga Y., Kaku N., Uno N., Kosai K., Sakamoto K., Hasegawa H., Yanagihara K. A novel macrolide, solithromycin suppresses mucin overexpression induced by Pseudomonas aeruginosa LPS in airway epithelial cells // J Infect Chemother. – 2020. – Vol. 26, No. 9. – P. 1008–1010. DOI: 10.1016/j.jiac.2020.06.014
107. Imamura Y., Yanagihara K., Mizuta Y., Seki M., Ohno H., Higashiyama Y., Miyazaki Y., Tsukamoto K., Hirakata Y., Tomono K., Kadota J., Kohno S. Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl)homoserine lactone in NCI-H292 Cells // Antimicrob Agents Chemother. – 2004. – Vol. 48, No. 9. – P. 3457–3461. DOI: 10.1128/AAC.48.9.3457-3461.2004
108. Tominaga K. The emerging role of senescent cells in tissue homeostasis and pathophysiology // Pathobiol Aging Age Relat Dis. – 2015. – Vol. 5. – P. 27743. DOI: 10.3402/pba.v5.27743
109. Ozsvari B., Nuttall J.R., Sotgia F., Lisanti M.P. Azithromycin and Roxithromycin define a new family of “senolytic” drugs that target senescent human fibroblasts // Aging (Albany NY). – 2018. – Vol. 10, No. 11. – P. 3294–3307. DOI: 10.18632/aging.101633
110. Farouk F., Elmaaty A.A., Elkamhawy A., Tawfik H.O., Alnajjar R., Abourehab M.A.S., Saleh M.A., Eldehna W.M., Al-Karmalawy A.A. Investigating the potential anticancer activities of antibiotics as topoisomerase II inhibitors and DNA intercalators: in vitro, molecular docking, molecular dynamics, and SAR studies // J Enzyme Inhib Med Chem. – 2023. – Vol. 38, No. 1. – P. 2171029. DOI: 10.1080/14756366.2023.2171029
111. Bunnag C., Jareoncharsri P., Voraprayoon S., Vitavasiri A., Supatchaipisit P., Kongpatanakul S. Efficacy of spiramycin as an alternative to amoxicillin in the treatment of acute upper respiratory tract infections // Clin Drug Investig. – 1998. – Vol. 15, No. 6. – P. 461–466. DOI: 10.2165/00044011-199815060-00001
112. Rocha R.T., Awad C.E., Ali A., Matyas R., Vital A.C., Silva C.O., Dainesi S.M., Salazar M.S., Nakatani J. Comparison of spiramycin and clarithromycin for community-acquired lower respiratory tract infections // Int J Clin Pract. – 1999. – Vol. 53, No. 6. – P. 433–436.
113. Bocheńska-Marciniak M., Kupryś I., Krzywiecki A., Sliwowski A., Kuna P. Clinical efficacy and safety of spiramycin and clarithromycin in the treatment of outpatients with lower respiratory tract infections // Pol Arch Med Wewn. – 1998. – Vol. 100, No. 3. – P. 222–235.
114. Strachunskiĭ L.S., Sudilovskaia N.N., Melikhov O.G. Rovamycin (spiramycin)--a macrolide antibiotic for intravenous administration: a trial in the treatment of pneumonia // Ter Arkh. 1995. – Vol. 67, No. 3. – P. 7–11. Russian
115. Gel’tser B.I., Rubashek I.A., Semisotova E.F., Kramar A.V. The macrolide antibiotic rovamycin in the treatment of pneumonias // Ter Arkh. 1996. – Vol. 68, No. 12. – P. 22–25. Russian
116. Strachunskiĭ L.S., Sudilovskaia N.N., Shiriaeva N.V., Nechaeva N.B. Spiramycin (rovamycin), a macrolide antibiotic for oral treatment of outpatient pneumonia // Klin Med (Mosk). – 1995. – Vol. 73, No. 2. – P. 45–48. Russian
117. Otsiians E.N., Rziankina M.F., D’iachenko V.G., Suleĭmanov S.Sh., Zakharova E.I., Bachaldina O.M. Use of spiramycin in the treatment of inflammatory diseases ot the respiratory tract in children in ambulatory conditions // Antibiot Khimioter. – 1998. – Vol. 43, No. 11. – P. 34–37.
118. Rotzetter P.A., Le Liboux A., Pichard E., Cimasoni G. Kinetics of spiramycin/metronidazole (Rodogyl) in human gingival crevicular fluid, saliva and blood // J Clin Periodontol. – 1994. – Vol. 21, No. 9. – P. 595–600. DOI: 10.1111/j.1600-051x.1994.tb00749.x
119. Rams T.E., Dujardin S., Sautter J.D., Degener J.E., van Winkelhoff A.J. Spiramycin resistance in human periodontitis microbiota // Anaerobe. – 2011. – Vol. 17, No. 4. – P. 201–205. DOI: 10.1016/j.anaerobe.2011.03.017
120. Poulet P.P., Duffaut D., Barthet P., Brumpt I. Concentrations and in vivo antibacterial activity of spiramycin and metronidazole in patients with periodontitis treated with high-dose metronidazole and the spiramycin/metronidazole combination // J Antimicrob Chemother. – 2005. – Vol. 55, No. 3. – P. 347–351. DOI: 10.1093/jac/dki013
121. Kocsmár É., Buzás G.M., Szirtes I., Kocsmár I., Kramer Z., Szijártó A., Fadgyas-Freyler P., Szénás K., Rugge M., Fassan M., Kiss A., Schaff Z., Röst G., Lotz G. Primary and secondary clarithromycin resistance in Helicobacter pylori and mathematical modeling of the role of macrolides // N at Commun. – 2021. – Vol. 12, No. 1. – P. 2255. DOI: 10.1038/s41467-021-22557-7
122. Mégraud F., Graham D.Y., Howden C.W., Trevino E., Weissfeld A., Hunt B., Smith N., Leifke E., Chey W.D. Rates of Antimicrobial Resistance in Helicobacter pylori Isolates From Clinical Trial Patients Across the US and Europe // Am J Gastroenterol. – 2023. – Vol. 118, No. 2. – P. 269–275. DOI: 10.14309/ajg.0000000000002045
123. Perfilova K.M., Butina T.Yu., Neumoina N.V., Shutova I.V., Kuznetsova I.A., Troshina T.A., Shmakova T.V., Levina S.N. Macrolide resistance of H.pylori due to ermB gene during H. pylori infection in real practice // Opera Medica et Physiologica. – 2024. – Vol. 11, No. 2. – P. 129–138. DOI: 10.24412/2500-2295-2024-2-129-138
124. Berstad A., Berstad K., Wilhelmsen I., Hatlebakk J.G., Nesje L.B., Hausken T. Spiramycin in triple therapy of Helicobacter pylori-associated peptic ulcer disease. An open pilot study with 12-month follow-up // Aliment Pharmocol Ther. – 1995. – Vol. 9, No. 2. – P. 197–200. DOI: 10.1111/j.1365-2036.1995.tb00371.x
125. Olafsson S., Berstad A., Bang C.J., Nysaeter G., Coll P., Tefera S., Hatlebakk J.G., Hausken T., Olafsson T. Spiramycin is comparable to oxytetracycline in eradicating H. pylori when given with ranitidine bismuth citrate and metronidazole // Aliment Pharmacol Ther. – 1999. – Vol. 13, No. 5. – P. 651–659. DOI: 10.1046/j.1365-2036.1999.00517
126. Kalach N., Raymond J., Benhamou PH., Bergeret M., Senouci L., Gendrel D., Dupont C. Spiramycin as an alternative to amoxicillin treatment associated with lansoprazole/metronidazole for Helicobacter pylori infection in children // Eur J Pediatr. – 1998. – Vol. 157, No. 7. – P. 607–608. DOI: 10.1007/s004310050891
127. Telaku S., Islamaj E., Veliu A., Bytyqi J., Telaku M., Fejza H., Alidema F. The Efficacy of Spiramycin-based Triple Therapy for First-Line Helicobacter Pylori Eradication // Pharmakeftiki. – 2023. – Vol. 35, No. 4. – P. 64–70. DOI: 10.60988/pj.v35i4.28
128. Михайлова В.В., Лобова Т.П., Шишкина М.С., Скворцова А.Н., Зюзгина С.В., Зиновьева О.Е. Обзор эпизоотической ситуации по хламидиозу животных и птиц на территории Российской Федерации за период с 2019 по 2021 год // Аграрная наука. – 2024. – № 3. – С. 57–61. DOI: 10.32634/0869-8155-2024-380-3-57-61
129. Fesolowicz S., Kwiatkowski A., Wszola M., Podsiadly E., Ostrowski K., Durlik M., Paczek L., Tylewska- Wierzbanowska S., Rowinski W., Chmura A. Chlamydia pneumoniae infection in patients after kidney transplantation treated with spiramycin // Transplant Proc. – 2009. – Vol. 41, No. 1. – P. 167–169. DOI: 10.1016/j.transproceed.2008.09.062
130. Dylewski J., Clecner B., Dubois J., St-Pierre C., Murray G., Bouchard C., Phillips R. Comparison of spiramycin and doxycycline for treatment of Chlamydia trachomatis genital infections // Antimicrob Agents Chemother. – 1993. – Vol. 37, No. 6. – P. 1373–1374. DOI: 10.1128/AAC.37.6.1373.
131. Sreiri N., Ben Abdallah Y., Belfeki N., Klopfenstein T., Zayet S. Chlamydia psittaci-related pleuro- myocarditis // Braz J Infect Dis. – 2024. – Vol. 28, No. 2. – P. 103739. DOI: 10.1016/j.bjid.2024.103739
132. Gomes Ferrari Strang A.G., Ferrar R.G, Falavigna-Guilherme A.L. Gestational toxoplasmosis treatment changes the child’s prognosis: A cohort study in southern Brazil // PLoS Negl Trop Dis. – 2023. – Vol. 17, No. 9. – P. e0011544. DOI: 10.1371/journal.pntd.0011544
133. Briciu V., Ionică AM., Flonta M., Almaș A., Muntean M., Topan A., Horvat M., Ungureanu L., Lupșe M. Toxoplasmosis Screening during Pregnancy in a Romanian Infectious Diseases Tertiary Center: Results of a 15 Years Follow-Up Program // Microorganisms. – 2023. – Vol. 11, No. 9. – P. 2189. DOI: 10.3390/microorganisms11092189
134. Schneider M.O., Faschingbauer F., Kagan K.O., Groß U., Enders M., Kehl S.; AGG Section Maternal Diseases. Toxoplasma gondii Infection in Pregnancy - Recommendations of the Working Group on Obstetrics and Prenatal Medicine (AGG – Section on Maternal Disorders) // Geburtshilfe Frauenheilkd. – 2023. – Vol. 83, No. 12. – P. 1431–1445. DOI: 10.1055/a-2111-7394
135. Avci M.E., Arslan F., Çiftçi Ş., Ekiz A., Tüten A., Yildirim G., Madazli R. Role of spiramycin in prevention of fetal toxoplasmosis // J Matern Fetal Neonatal Med. – 2016. – Vol. 29, No. 13. – P. 2073–2076. DOI: 10.3109/14767058.2015.1074998
136. Felín M.S., Wang K., Moreira A., Grose A., Leahy K., Zhou Y., Clouser FA., Siddiqui M., Leong N., Goodall P., Michalowski M., Ismail M., Christmas M., Schrantz S., Caballero Z., Norero X., Estripeaut D., Ellis D., Raggi C., Castro C., Moossazadeh D., Ramirez M., Pandey A., Ashi K., Dovgin S., Dixon A., Li X., Begeman I., Heichman S., Lykins J., Villalobos-Cerrud D., Fabrega L., Montalvo JLS., Mendivil C., Quijada MR., Fernández-Pirla S., de La Guardia V., Wong D., de Guevara M.L., Flores C., Borace J., García A., Caballero N., Rengifo-Herrera C., de Saez M.T.M., Politis M., Wroblewski K., Karrison T., Ross S., Dogra M., Dhamsania V., Graves N., Kirchberg M., Mathur K., Aue A., Restrepo C.M., Llanes A., Guzman G., Rebellon A., Boyer K., Heydemann P., Noble A.G., Swisher C., Rabiah P., Withers S., Hull T., Su C., Blair M., Latkany P., Mui E., Vasconcelos-Santos D.V., Villareal A., Perez A., Galvis C.A.N., Montes M.V., Perez N.I.C., Ramirez M., Chittenden C., Wang E., Garcia-López L.L., Muñoz-Ortiz J., Rivera-Valdivia N., Bohorquez-Granados M.C., de-la-Torre G.C., Padrieu G., Hernandez J.D.V., Celis-Giraldo D., Dávila JAA., Torres E., Oquendo M.M., Arteaga-Rivera J.Y., Nicolae D.L., Rzhetsky A., Roizen N., Stillwaggon E., Sawers L., Peyron F., Wallon M., Chapey E., Levigne P., Charter C., De Frias M., Montoya J., Press C., Ramirez R., Contopoulos-Ioannidis D., Maldonado Y., Liesenfeld O., Gomez C., Wheeler K., Holfels E., Frim D., McLone D., Penn R., Cohen W., Zehar S., McAuley J., Limonne D., Houze S., Abraham S., Piarroux R., Tesic V., Beavis K., Abeleda A., Sautter M., El Mansouri B., El Bachir A., Amarir F., El Bissati K., de-la-Torre A., Britton G., Motta J., Ortega-Barria E., Romero IL., Meier P., Grigg M., Gómez-Marín J., Kosagisharaf J.R., Llorens XS., Reyes O., McLeod R. Building Programs to Eradicate Toxoplasmosis Part I: Introduction and Overview // Curr Pediatr Rep. – 2022. – Vol. 10, No. 3. – P. 57–92. DOI: 10.1007/s40124-022-00269-w
137. Felín M.S., Wang K., Moreira A., Grose A., Leahy K., Zhou Y., Clouser FA., Siddiqui M., Leong N., Goodall P., Michalowski M., Ismail M., Christmas M., Schrantz S., Caballero Z., Norero X., Estripeaut D., Ellis D., Raggi C., Castro C., Moossazadeh D., Ramirez M., Pandey A., Ashi K., Dovgin S., Dixon A., Li X., Begeman I., Heichman S., Lykins J., Villalobos-Cerrud D., Fabrega L., Montalvo J.L.S., Mendivil C., Quijada MR., Fernández-Pirla S., de La Guardia V., Wong D., de Guevara M.L., Flores C., Borace J., García A., Caballero N., Rengifo-Herrera C., de Saez M.T.M., Politis M., Ross S., Dogra M., Dhamsania V., Graves N., Kirchberg M., Mathur K., Aue A., Restrepo C.M., Llanes A., Guzman G., Rebellon A., Boyer K., Heydemann P., Noble AG., Swisher C., Rabiah P., Withers S., Hull T., Frim D., McLone D., Su C., Blair M., Latkany P., Mui E., Vasconcelos-Santos D.V., Villareal A., Perez A., Galvis C.A.N., Montes M.V., Perez N.I.C., Ramirez M., Chittenden C., Wang E., Garcia-López L.L., Padrieu G., Muñoz-Ortiz J., Rivera-Valdivia N., Bohorquez- Granados M.C., de-la-Torre G.C., Hernandez J.D.V., Celis-Giraldo D., Dávila J.A.A., Torres E., Oquendo M.M., Arteaga-Rivera J.Y., Nicolae D.L., Rzhetsky A., Roizen N., Stillwaggon E., Sawers L., Peyron F., Wallon M., Chapey E., Levigne P., Charter C., De Frias M., Montoya J., Press C., Ramirez R., Contopoulos-Ioannidis D., Maldonado Y., Liesenfeld O., Gomez C., Wheeler K., Zehar S., McAuley J., Limonne D., Houze S., Abraham S., Piarroux R., Tesic V., Beavis K., Abeleda A., Sautter M., El Mansouri B., El Bachir A., Amarir F., El Bissati K., Holfels E., Frim D., McLone D., Penn R., Cohen W., de-la-Torre A., Britton G., Motta J., Ortega-Barria E., Romero I.L., Meier P., Grigg M., Gómez-Marín J., Kosagisharaf J.R., Llorens X.S., Reyes O., McLeod R. Building Programs to Eradicate Toxoplasmosis Part IV: Understanding and Development of Public Health Strategies and Advances “Take a Village” // Curr Pediatr Rep. – 2022. – Vol. 10, No. 3. – P. 125–154. DOI: 10.1007/s40124-022-00268-x
138. Wei H.X., Wei S.S., Lindsay D.S., Peng H.J. A Systematic Review and Meta-Analysis of the Efficacy of Anti-Toxoplasma gondii Medicines in Humans // PLoS One. – 2015. – Vol. 10, No. 9. – P. e0138204. DOI: 10.1371/journal.pone.0138204
139. Montoya J.G., Laessig K., Fazeli M.S., Siliman G., Yoon S.S., Drake-Shanahan E., Zhu C., Akbary A., McLeod R. A fresh look at the role of spiramycin in preventing a neglected disease: meta-analyses of observational studies // Eur J Med Res. – 2021. – Vol. 26, No. 1. – P. 143. DOI: 10.1186/s40001-021-00606-7
140. Valentini P., Buonsenso D., Barone G., Serranti D., Calzedda R., Ceccarelli M., Speziale D., Ricci R., Masini L. Spiramycin/cotrimoxazole versus pyrimethamine/sulfonamide and spiramycin alone for the treatment of toxoplasmosis in pregnancy // J Perinatol. – 2015. – Vol. 35, No. 2. – P. 90–94. DOI: 10.1038/jp.2014.161
141. Hotop A., Hlobil H., Gross U. Efficacy of rapid treatment initiation following primary Toxoplasma gondii infection during pregnancy // Clin Infect Dis. – 2012. – Vol. 54, No. 11. – P. 1545–1552. DOI: 10.1093/cid/cis234
142. Hansen M.P., Scott A.M., McCullough A., Thorning S., Aronson J.K., Beller E.M., Glasziou P.P., Hoffmann T.C., Clark J., Del Mar C.B. Adverse events in people taking macrolide antibiotics versus placebo for any indication // Cochrane Database Syst Rev. – 2019. – Vol. 1, No. 1. – P. CD011825. DOI: 10.1002/14651858.CD011825.pub2
143. You C., Zhang Y., Xu Y., Xu P., Li Z., Li H., Huang S., Chen Z., Li J., Xu H.E., Jiang Y. Structural basis for motilin and erythromycin recognition by motilin receptor // Sci Adv. – 2023. – Vol. 9, No. 11. – P. eade9020. DOI: 10.1126/sciadv.ade9020
144. Itoh Z., Suzuki T., Nakaya M., Inoue M., Mitsuhashi S. Gastrointestinal motor-stimulating activity of macrolide antibiotics and analysis of their side effects on the canine gut // Antimicrob Agents Chemother. – 1984. – Vol. 26, No. 6. – P. 863–869. DOI: 10.1128/AAC.26.6.863
145. Shim S.R., Lee Y., In S.M., Lee K.I., Kim I., Jeong H., Shin J., Kim J.Y. Increased risk of hearing loss associated with macrolide use: a systematic review and meta-analysis // Sci Rep. – 2024. – Vol. 14, No. 1. – P. 183. DOI: 10.1038/s41598-023-50774-1
146. Vanoverschelde A., Oosterloo B.C., Ly N.F., Ikram M.A., Goedegebure A., Stricker B.H., Lahousse L. Macrolide-associated ototoxicity: a cross-sectional and longitudinal study to assess the association of macrolide use with tinnitus and hearing loss // J Antimicrob Chemother. – 2021. – Vol. 76, No. 10. – P. 2708–2716. DOI: 10.1093/jac/dkab232
147. Wu Y., Bi W.T., Qu L.P., Fan J., Kong X.J., Ji C.C., Chen X.M., Yao F.J., Liu L.J., Cheng Y.J., Wu S.H. Administration of macrolide antibiotics increases cardiovascular risk // Front Cardiovasc Med. – 2023. – Vol. 10. – P. 1117254. DOI: 10.3389/fcvm.2023
148. Остроумова О.Д., Голобородова И.В. Лекарственно-индуцированная тахикардия типа «пируэт» // Фарматека. – 2019. – Т. 26, № 9. – С. 11–20. DOI: 10.18565/pharmateca.2019.9.11-20
149. Volberg W.A., Koci B.J., Su W., Lin J., Zhou J. Blockade of human cardiac potassium channel human ether-a-go-go-related gene (HERG) by macrolide antibiotics // J Pharmacol Exp Ther. – 2002. – Vol. 302, No. 1. – P. 320–327. DOI: 10.1124/jpet.302.1.320.
150. Wang X., Pan Z., Wang J., Wang H., Fan H., Gong T., Sun Q., Feng Y., Liang P. Characterization of the molecular mechanisms underlying azithromycin-induced cardiotoxicity using human-induced pluripotent stem cell-derived cardiomyocytes //Clin Transl Med. – 2021. – Vol. 11, No. 9. – P. e549. DOI: 10.1002/ctm2.549 148
151. Prasil P., Sleha R., Kacerovsky M., Bostik P. Comparison of adverse reactions of spiramycin versus pyrimethamine/sulfadiazine treatment of toxoplasmosis in pregnancy: is spiramycin really the drug of choice for unproven infection of the fetus? // J Matern Fetal Neonatal Med. – 2023. – Vol. 36, No. 1. – P. 2215377. DOI: 10.1080/14767058.2023.2215377
152. Descotes J., Vial T., Delattre D., Evreux J.C. Spiramycin: safety in man // J Antimicrob Chemother. – 1988. – Vol. 22 (Suppl B). – P. 207–210. DOI: 10.1093/jac/22.supplement_b.207
Рецензия
Для цитирования:
Бутранова О.И., Зырянов С.К., Абрамова А.А. Спирамицин: прошлое и будущее антибиотика с плейотропными эффектами в терапии внебольничных инфекций. Фармация и фармакология. 2024;12(2):150-171. https://doi.org/10.19163/2307-9266-2024-12-2-150-171
For citation:
Butranova O.I., Zyryanov S.K., Abramova A.A. Spiramycin: The past and future of an antibiotic with pleiotropic effects in the therapy of community-acquired infections. Pharmacy & Pharmacology. 2024;12(2):150-171. https://doi.org/10.19163/2307-9266-2024-12-2-150-171